nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.27 44-49
基于血管内皮功能探讨冠状动脉微循环障碍“虚气留滞”病机的科学内涵
基金项目(Foundation): 国家自然科学基金面上项目(81774229); 第四批江苏省名老中医药专家传承工作室建设项目(苏中医科教[2021]7号); 江苏省中医药科技发展计划面上项目(MS2023049); 南京中医药大学自然科学基金项目(XZR2023063); 南京市中医药青年人才培养计划项目(ZYQ20043); 江苏省研究生科研与实践创新计划项目(SJCX_1071)
邮箱(Email):
DOI: 10.13194/j.issn.1673-842X.2025.07.008
摘要:

血管内皮是外周组织与血液循环之间的一层选择性的半透膜,不仅能调控血管内外物质交换,还能分泌多种活性物质,以调节血管张力、维持正常血运,对心脏内稳态具有重要调节作用,血管内皮功能障碍可损伤微循环灌注,加重心肌缺血,是冠状动脉微循环障碍(coronary microcirculation dysfunction,CMD)的关键病理机制。“虚气留滞”为CMD的核心病机,“虚气”指心、脾、肾脏气虚损,为发病之本;“留滞”指因虚生气滞、痰瘀,痹阻心络,为发病之标。若血管内皮屏障受损、舒缩失衡可导致血管通透性增加、血管过度收缩,与“虚气”引起的防御固摄、协调脉络功能失调相似;血管内皮凝血-纤溶功能失衡可导致微血栓生成增加,则与“虚气”引起的推动血运功能失常、实邪“留滞”相似,进而影响微血管结构与功能,引发CMD。文章探讨“虚气留滞”理论与CMD血管内皮功能障碍的相关性,以阐述CMD“虚气留滞”病机的科学内涵,并以补虚通滞为治则介绍了中医药靶向调节血管内皮功能干预CMD的相关进展,以期为中西医结合治疗CMD提供理论依据与临床用药参考。

Abstract:

Vascular endothelium is a selective semi-permeable membrane between peripheral tissues and blood circulation,which can not only regulate the exchange of substances inside and outside the blood vessels,but also secrete a variety of active substances to regulate vascular tone and maintain normal blood vascularity,which has an important regulatory role in cardiac homeostasis.“Stagnation of virtual Qi”is the core pathogenesis of coronary microcirculation dysfunction(CMD),and“virtual Qi”refers to the virtual Qi in the heart,spleen,and kidney,which is the root cause of the pathogenesis.“Stagnation”refers to stagnation,phlegm and stasis due to hypoxia,which is the mark of the disease. If the vascular endothelial barrier is damaged and the diastolic imbalance can lead to increased vascular permeability and excessive vascular constriction,which is similar to the dysfunction of defense and coordination caused by“virtual Qi”. The imbalance of vascular endothelial coagulation-fibrinolysis can lead to an increase in microthrombosis,which is similar to the dysfunction of promoting blood circulation and the “stagnation” of real evil caused by “virtual Qi”,which in turn affects the structure and function of microvessels and causes CMD. This article attempts to explore the correlation between the theory of “stagnation of virtual Qi” and CMD vascular endothelial dysfunction,in order to elaborate the scientific connotation of the pathogenesis of “stagnation of virtual Qi” in CMD,and introduces the relevant progress of targeted regulation of vascular endothelial function intervention in CMD by traditional Chinese medicine with the principle of supplementing deficiency and stagnation,in order to provide a theoretical basis and clinical reference for the treatment of CMD with the combination of traditional Chinese and Western medicine.

参考文献

[1] CHEN W Q,NI M,HUANG H,et al. Chinese expert consensus on the diagnosis and treatment of coronary microvascular diseases(2023 Edition)[J]. MedComm,2023,4(6):e438.

[2] BELTRAME JF,WILSON DP. Developing novel therapies in coronary vasomotor disorders:translational gaps from basic science to clinical impact[J]. J Pharmacol Exp Ther,2024,390(3):277-279.

[3]郭艳娇,张克成,王丽杰,等.麝香保心丸联合尼可地尔对非阻塞性冠状动脉缺血疾病患者左室舒张功能的影响[J].辽宁中医杂志,2023,50(10):139-142.

[4]黄世敬,尹颖辉.论“虚气流滞”[J].北京中医药大学学报,1996,19(6):22-24.

[5]刘红旭,邢文龙,魏鹏路,等.冠状动脉微血管病中医诊疗指南[J].中医杂志,2023,64(21):2261-2268.

[6] CREA F,MONTONE RA,RINALDI R. Pathophysiology of coronary microvascular dysfunction[J]. Circ J,2022,86(9):1319-1328.

[7]吴以岭,贾振华,常丽萍,等.脉络学说营卫理论指导血管病变防治研究[J].中国实验方剂学杂志,2019,25(1):1-10.

[8]杨梦,胡思远,李琳,等.基于“虚气留滞”理论探讨线粒体自噬在心肌缺血再灌注损伤中的调控机制[J].中国中医药信息杂志,2024,31(10):8-13.

[9] JACKSON ML,BOND AR,GEORGE SJ. Mechanobiology of the endothelium in vascular health and disease:in vitro shear stress models[J]. Cardiovasc Drugs Ther,2023,37(5):997-1010.

[10] DIAZ-RICART M,TORRAMADE-MOIX S,PASCUAL G,et al.Endothelial damage,inflammation and immunity in chronic kidney disease[J]. Toxins(Basel),2020,12(6):361.

[11] ALVAREZ IA,LEE M,ESHAQ RS,et al. High glucose induces oxidative stress that alters glycocalyx proteoglycan levels in primary rat retinal microvascular endothelial cells and in isolated ophthalmic arteries[J]. Pathophysiology,2024,31(1):89-99.

[12] QIU Y,BUFFONGE S,RAMNATH R,et al. Endothelial glycocalyx is damaged in diabetic cardiomyopathy:angiopoietin1 restores glycocalyx and improves diastolic function in mice[J]. Diabetologia,2022,65(5):879-894.

[13] JI M H,CHENG J,ZHANG D M. Oxycodone protects cardiac microvascular endothelial cells against ischemia/reperfusion injury by binding to Sigma-1 Receptor[J]. Bioengineered,2022,13(4):9628-9644.

[14] SABE SA,FENG J,SELLKE FW,et al. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature[J]. Am J Physiol Heart Circ Physiol,2022,322(5):H819-H841.

[15] MINATO H,ENDO R,KURATA Y,et al. Azelnidipine protects HL-1 cardiomyocytes from hypoxia/reoxygenation injury by enhancement of NO production independently of effects on gene expression[J]. Heart Vessels,2024,39(10):899-908.

[16] HEO R,KANG MJ,MUN SY,et al. Antidiabetic omarigliptin dilates rabbit aorta by activating voltage-dependent K+channels and the sarco/endoplasmic reticulum Ca2+-ATPase pump[J].Fundam Clin Pharmacol,2023,37(1):75-84.

[17] JANASZAK-JASIECKA A,SIEKIERZYCKA A,P?OSKA A,et al. Endothelial dysfunction driven by hypoxia-the influence of oxygen deficiency on NO bioavailability[J]. Biomolecules,2021,11(7):982.

[18] ZHANG P,ZOU P T,HUANG X,et al. Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxiainduced vascular dysfunction[J]. Korean J Physiol Pharmacol,2024,28(5):469-478.

[19] NISHIYAMA SK,ZHAO J,WRAY DW,et al. Vascular function and endothelin-1:tipping the balance between vasodilation and vasoconstriction[J]. J Appl Physiol(1985),2017,122(2):354-360.

[20] KANG MG,KOO BK,TANTRY US,et al. Association between thrombogenicity indices and coronary microvascular dysfunction in patients with acute myocardial infarction[J]. JACC Basic Transl Sci,2021,6(9-10):749-761.

[21] BELYAEV AV,KUSHCHENKO YK. Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations[J]. Biomech Model Mechanobiol,2023,22(3):785-808.

[22] CHEN Z S,LI T L,KAREEM K,et al. The role of PI3K/Akt signaling pathway in non-physiological shear stress-induced platelet activation[J]. Artif Organs,2019,43(9):897-908.

[23] WANG B,WU L J,CHEN J,et al. Metabolism pathways of arachidonic acids:mechanisms and potential therapeutic targets[J]. Signal Transduct Target Ther,2021,6(1):94.

[24] FAN M G,WANG X,PENG X,et al. Prognostic value of plasma von Willebrand factor levels in major adverse cardiovascular events:a systematic review and meta-analysis[J]. BMC Cardiovasc Disord,2020,20(1):72.

[25] LI S,CHEN J X,LIU M Y,et al. Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury[J]. Basic Res Cardiol,2021,116(1):65.

[26] HE C L,YI P F,FAN Q J,et al. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells[J].Immunopharmacol Immunotoxicol,2013,35(2):215-224.

[27] PAN C S,YAN L,LIN S Q,et al. QiShenYiQi pills attenuates ischemia/reperfusion-induced cardiac microvascular hyperpermeability implicating src/caveolin-1 and RhoA/ROCK/mLC signaling[J]. Front Physiol,2021,12:753761.

[28]吴以岭.络病学[M].北京:中国中医药出版社,2019.

[29] SUN D N,WANG J,TOAN S,et al. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus:focus on mitochondrial quality surveillance[J].Angiogenesis,2022,25(3):307-329.

[30]林飞,郭丽丽,王阶.基于线粒体的功能阐释中医“气”的作用[J].中国中西医结合杂志,2014,34(8):903-906.

[31] XIE L D,WU Y,FAN Z J,et al. Astragalus polysaccharide protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury:The role of PI3K/AKT,Bax/Bcl-2 and caspase-3[J]. Mol Med Rep,2016,14(1):904-910.

[32]王晓楠,于成龙,辛彩霞,等.黄芪苷保护缺血损伤BMECs的作用机制研究[J].中国卫生工程学,2023,22(2):179-182.

[33] LIU Z X,HAN X,YOU Y,et al. Shuangshen ningxin formula attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial function[J]. J Ethnopharmacol,2024,323:117690.

[34]庞琳琳,张会永,闵冬雨,等.高脂血症脾虚痰浊猪血清高密度脂蛋白向失功能性高密度脂蛋白转变[J].中华中医药学刊,2022,40(9):78-82.

[35] MIAO LC,ZHOU Y,TAN DC,et al. Ginsenoside Rk1 improves endothelial function in diabetes through activating peroxisome proliferator-activated receptors[J]. Food Funct,2024,15(10):5485-5495.

[36]朱敬轩,陈文娜,宋囡,等.冠心病痰瘀互结证和气虚血瘀证鉴别诊断的实验室指标筛选[J].辽宁中医杂志,2024,51(3):100-103,224.

[37] LIU S Y,WANG Q,ZHOU H,et al. Adrenomedullin improved endothelial dysfunction via receptor-Akt pathway in rats with obesity-related hypertension[J]. Hypertens Res,2024,47(8):2157-2171.

[38]史文欢,季康寿,杨茗茜,等.焦虑/抑郁临床证治特点频数分析及合并疾病规律研究[J].辽宁中医药大学学报,2021,23(5):156-162.

[39] BEGONJA AJ,TEICHMANN L,GEIGER J,et al. Platelet regulation by NO/cGMP signaling and NAD(P)H oxidasegenerated ROS[J]. Blood Cells Mol Dis,2006,36(2):166-170.

[40]王贤良,苏立硕,毛静远,等.理气化痰活血方对冠状动脉微循环障碍模型大鼠血管内皮功能的影响[J].中医杂志,2019,60(21):1849-1853,1860.

[41]任秋安.理气化痰活血方对CMD大鼠氧化应激影响及调控心肌组织NRG-1/ErbB信号通路研究[D].天津:天津中医药大学,2023.

[42] QIU L H,XIE X J,ZHANG B Q. Astragaloside IV improves homocysteine-induced acute phase endothelial dysfunction via antioxidation[J]. Biol Pharm Bull,2010,33(4):641-646.

[43] WU Y,LU X R,XIANG F L,et al. North American ginseng protects the heart from ischemia and reperfusion injury via upregulation of endothelial nitric oxide synthase[J]. Pharmacol Res,2011,64(3):195-202.

[44] ZHENG Z H,YU Z J,XU B Y,et al. Pretreatment with Shenmai injection protects against coronary microvascular dysfunction[J]. Evid Based Complement Alternat Med,2022,2022:8630480.

[45]张玉芬,王玉珍,赵洁,等.补肾活血汤对去卵巢大鼠心脏微血管内皮细胞形态及血清E2、ET、NO、PGI2、TXA2含量的影响[J].现代生物医学进展,2014,14(31):6044-6049,6038.

[46]陈婷,刘海瑞,张燕燕,等.通脉养心丸通过上调GPER激活HIF-1α/eNOS信号通路减轻心肌缺血再灌后无复流的作用机制研究[J].药学学报,2023,58(11):3311-3320.

[47] LIU Y L,ZHOU X Y,XUAN L J. Magnesium lithospermate B ameliorates microcirculation perfusion in rats by promoting vascular NO production via activating the PI3K/AKT pathway[J]. Acta Pharmacol Sin,2019,40(8):1010-1018.

[48]马新豫,关玲霞,张国坡.基于Akt/eNOS通路探讨延胡索乙素对缺氧/复氧诱导的心脏微血管内皮细胞损伤的保护作用[J].中西医结合心脑血管病杂志,2022,20(10):1766-1771.

[49]陈保增,冯明静,常方圆,等.麝香保心丸对冠状动脉微循环障碍病人血管内皮功能的影响[J].中西医结合心脑血管病杂志,2022,20(1):182-184.

[50] CHEN GH,XU CS,GILLETTE TG,et al. Cardiomyocytederived small extracellular vesicles can signal ENOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury[J]. Theranostics,2020,10(25):11754-11774.

[51]王珍,辛东,彭柯,等.银丹心脑通软胶囊对冠状动脉慢血流微血管性心绞痛患者的作用[J].中国中西医结合杂志,2019,39(4):418-422.

基本信息:

DOI:10.13194/j.issn.1673-842X.2025.07.008

中图分类号:R259

引用信息:

[1]黄克,左可可,顾宁.基于血管内皮功能探讨冠状动脉微循环障碍“虚气留滞”病机的科学内涵[J].辽宁中医药大学学报,2025,27(07):44-49.DOI:10.13194/j.issn.1673-842X.2025.07.008.

基金信息:

国家自然科学基金面上项目(81774229); 第四批江苏省名老中医药专家传承工作室建设项目(苏中医科教[2021]7号); 江苏省中医药科技发展计划面上项目(MS2023049); 南京中医药大学自然科学基金项目(XZR2023063); 南京市中医药青年人才培养计划项目(ZYQ20043); 江苏省研究生科研与实践创新计划项目(SJCX_1071)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文